Profiling \& Benchmarking

profvis demo

```
n = 1e6
d = tibble(
    x1 = rt(n, df = 3),
    x2 = rt(n, df = 3),
    x3 = rt(n, df = 3),
    x4 = rt(n, df = 3),
    x5 = rt(n, df = 3),
) %>%
    mutate(y = -2*x1 - 1*x2 + 0*x3 + 1*x4 + 2*x5 + rnorm(n))
profvis::profvis(lm(y~., data=d))
```


Benchmarking - bench

```
d = tibble(
    x = runif(10000),
    y=runif(10000)
)
(b = bench::mark(
    d[d$x > 0.5, ],
    d[which(d$x > 0.5), ],
    subset(d, x > 0.5),
    filter(d, x > 0.5)
))
## # A tibble: 4 x 6
## expression min median `itr/sec` mem_alloc `gc/sec`
## <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
## 1 d[d$x>0.5, ] 150.8\mus 156\mus 5943. 251.49KB 14.9
## 2 d[which(d$x > 0.5), ] 211.1\mus 216.61\mus
## 3 subset(d, x > 0.5) 279.11\mus 306.01\mus
## 4 filter(d, x > 0.5) 1.82ms 1.94ms
    4556. 267.34KB 22.9
    3241. 285.22KB 17.0
    515. 1.54MB 8.37
```


Parallelization

parallel

Part of the base packages in R

- tools for the forking of R processes (some functions do not work on Windows)
- Core functions:

O detectCores

O pvec

- mclapply
- mcparallel \& mccollect

detectCores

Surprisingly, detects the number of cores of the current system.
detectCores()
\#\# [1] 16

pvec

Parallelization of a vectorized function call

```
system.time(pvec(1:1e7, sqrt, mc.cores = 1))
\begin{tabular}{rrrr} 
\#\# & user & system elapsed \\
\#\# & 0.214 & 0.029 & 0.243
\end{tabular}
system.time(pvec(1:1e7, sqrt, mc.cores = 4))
\begin{tabular}{rrrr} 
\#\# & user & system & elapsed \\
\#\# & 0.442 & 0.185 & 0.631
\end{tabular}
system.time(pvec(1:1e7, sqrt, mc.cores = 8))
\begin{tabular}{rrrr} 
\#\# & user & system & elapsed \\
\#\# & 0.532 & 0.389 & 0.372
\end{tabular}
```


pvec-bench::system_time

```
bench::system_time(pvec(1:1e7, sqrt, mc.cores = 1))
\begin{tabular}{rrr} 
\#\# & process & real \\
\#\# & 180 ms & 180 ms
\end{tabular}
bench::system_time(pvec(1:1e7, sqrt, mc.cores = 4))
\begin{tabular}{rrr} 
\#\# & process & real \\
\#\# & 935 ms & 980 ms
\end{tabular}
bench::system_time(pvec(1:1e7, sqrt, mc.cores = 8))
\begin{tabular}{rrr} 
\#\# & process & real \\
\#\# & 1.01 s & 1.05 s
\end{tabular}
bench::system_time(Sys.sleep(.5))
## process real
## 1.93ms 500.09ms
system.time(Sys.sleep(.5))
\#\# user system elapsed
\begin{tabular}{llll} 
\#\# & 0.001 & 0.000 & 0.500
\end{tabular}
```

cores = c(1,4,8,16)
order = 6:8
f = function(x,y) {
system.time(
pvec(1:(10^y), sqrt, mc.cores = x)
)[3]
}
res = map(
cores,
function(x) {
map_dbl(order, f, x = x)
}
) %>%
do.call(rbind, .)
rownames(res) = paste0(cores," cores")
colnames(res) = paste0("10^",order)
res

10^6 10^7 10^8

1 cores 0.011 0.133 1.662

4 cores 0.059 0.360 4.664

8 cores 0.072 0.372 3.971

16 cores 0.098 0.432 3.979

```

\section*{mclapply}

\section*{Parallelized version of lapply}
```

system.time(rnorm(1e6))

\#\#	user	system	elapsed
\#\#	0.101	0.007	0.107

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 2)))

\#\#	user	system	elapsed
\#\#	0.148	0.136	0.106

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 4)))

\#\#	user	system	elapsed
\#\#	0.242	0.061	0.052

```
```

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 4)))

user system elapsed

0.097 0.047 0.079

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 8)))

user system elapsed

0.193 0.076 0.040

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 10)))

user system elapsed

0.162 0.083 0.041

system.time(unlist(mclapply(1:10, function(x) rnorm(1e5), mc.cores = 12)))

user system elapsed

0.098 0.065 0.037

```

\section*{mcparallel}

\section*{Asynchronously evaluation of an \(R\) expression in a separate process}
```

m = mcparallel(rnorm(1e6))
n = mcparallel(rbeta(1e6,1,1))
o = mcparallel(rgamma(1e6,1,1))
str(m)

List of 2

\$ pid: int 10870

\$ fd : int [1:2] 4 7

- attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"

str(n)

List of 2

\$ pid: int 10871

\$ fd : int [1:2] 5 9

- attr(*, "class")= chr [1:3] "parallelJob" "childProcess" "process"

```

\section*{mccollect}

Checks mcparallel objects for completion
```

str(mccollect(list(m,n,o)))

List of 3

\$ 10870: num [1:1000000] -0.529 0.177 -0.494 1.46 -0.883 ...

\$ 10871: num [1:1000000] 0.21 0.196 0.467 0.657 0.776 ...

\$ 10872: num [1:1000000] 0.688 0.22 1.887 0.284 1.492 ...

```

\section*{doMC \& foreach}

\section*{doMC \& foreach}

Packages by Revolution Analytics that provides the foreach function which is a parallelizable for loop (and then some).
- Core functions:
- registerDoMC
- foreach, \%dopar\%, \%do\%

\section*{registerDoMC}

Primarily used to set the number of cores used by foreach, by default uses options("cores") or half the number of cores found by detectCores from the parallel package.
```

options("cores")

\$cores

NULL

detectCores()

[1] 16

getDoParWorkers()

[1] 1

registerDoMC(4)
getDoParWorkers()

[1] 4

```

\section*{foreach}

A slightly more powerful version of base for loops (think for with an lapply flavor). Combined with \%do\% or \%dopar\% for single or multicore execution.
```

for(i in 1:10) {
sqrt(i)
}
foreach(i = 1:5) %do% {
sqrt(i)
}

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

[[4]]

[1] 2


```

\section*{foreach - iterators}
foreach can iterate across more than one value, but it doesn't do length coercion
```

foreach(i = 1:5, j = 1:5) %do% {
sqrt(i^2+j^2)
}

[[1]]

[1] 1.414214

[[2]]

[1] 2.828427

[[3]]

[1] 4.242641

[[4]]

[1] 5.656854

[[5]]

[1] 7.071068

```
```

foreach(i = 1:5, j = 1:2) %do% {
sqrt(i^2+j^2)
}

[[1]]

[1] 1.414214

[[2]]

[1] 2.828427

```

\section*{foreach - combining results}
```

foreach(i = 1:5, .combine='c') %do% {
sqrt(i)
}

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

foreach(i = 1:5, .combine='cbind') %do% {
sqrt(i)
}

result. }1\mathrm{ result. }2\mathrm{ result. }3\mathrm{ result. }4\mathrm{ result. }

[1,] 1 1.414214 1.732051 2 2.236068

 foreach(i = 1:5, .combine='+') %do% {
 sqrt(i)
 }

[1] 8.382332

```

\section*{foreach - parallelization}

Swapping out \%do\% for \%dopar\% will use the parallel backend.
```

registerDoMC(4)
system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))

user system elapsed

0.325 0.060 0.460

registerDoMC(8)
system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))

user system elapsed

0.679 0.096 0.483

registerDoMC(12)
system.time(foreach(i = 1:10) %dopar% mean(rnorm(1e6)))

user system elapsed

0.730 0.145 0.487

```


\section*{Example - Bootstraping}

Bootstrapping is a resampling scheme where the original data is repeatedly reconstructed by taking a samples of size n (with replacement) from the original data, and using that to repeat an analysis procedure of interest. Below is an example of fitting a local regression (loess) to some synthetic data, we will construct a bootstrap prediction interval for this model.
```

set.seed(3212016)
d = data.frame(x = 1:120) %>%
mutate(y = sin(2*pi*x/120) + runif(length(x),-1,1))
l = loess(y ~ x, data=d)
p = predict(l, se=TRUE)
d = d %>% mutate(
pred_y = p$fit,
 pred_y_se = p$se.fit
)

```
```

ggplot(d, aes(x,y)) +
geom_point(color="gray50") +
geom_ribbon(
aes(ymin = pred_y - 1.96 * pred_y_se,
ymax = pred_y + 1.96 * pred_y_se),
fill="red", alpha=0.25
) +
geom_line(aes(y=pred_y)) +
theme_bw()

```

BLAS and LAPACK

\section*{Statistics and Linear Algebra}

An awful lot of statistics is at its core linear algebra.

For example:
- Linear regession models, find
\[
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
\]
- Principle component analysis
- Find \(T=X W\) where \(W\) is a matrix whose columns are the eigenvectors of \(X^{T} X\).
- Often solved via SVD - Let \(X=U \Sigma W^{T}\) then \(T=U \Sigma\).

\section*{Numerical Linear Algebra}

Not unique to Statistics, these are the type of problems that come up across all areas of numerical computing.
- Numerical linear algebra \(\neq\) mathematical linear algebra
- Efficiency and stability of numerical algorithms matter
- Designing and implementing these algorithms is hard
- Don't reinvent the wheel - common core linear algebra tools (well defined API)

\section*{BLAS and LAPACK}

Low level algorithms for common linear algebra operations

\section*{BLAS}
- Basic Linear Algebra Subprograms
- Copying, scaling, multiplying vectors and matrices
- Origins go back to 1979, written in Fortran

LAPACK
- Linear Algebra Package
- Higher level functionality building on BLAS.
- Linear solvers, eigenvalues, and matrix decompositions

\section*{Modern variants?}

Most default BLAS and LAPACK implementations (like R's defaults) are somewhat dated
- Written in Fortran and designed for a single cpu core
- Certain (potentially non-optimal) hard coded defaults (e.g. block size).

Multithreaded alternatives:
- ATLAS - Automatically Tuned Linear Algebra Software
- OpenBLAS - fork of GotoBLAS from TACC at UTexas
- Intel MKL - Math Kernel Library, part of Intel's commercial compiler tools
- cuBLAS / Magma - GPU libraries from Nvidia and UTK respectively

\section*{OpenBLAS Matrix Multiply (DGEMM) Performance}
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{n}\) & \(\mathbf{1}\) core & \(\mathbf{2}\) cores & \(\mathbf{4}\) cores & \(\mathbf{8}\) cores \\
\hline 100 & 0.001 & 0.001 & 0.000 & 0.000 \\
\hline 500 & 0.018 & 0.011 & 0.008 & 0.008 \\
\hline 1000 & 0.128 & 0.068 & 0.041 & 0.036 \\
\hline 2000 & 0.930 & 0.491 & 0.276 & 0.162 \\
\hline 3000 & 3.112 & 1.604 & 0.897 & 0.489 \\
\hline 4000 & 7.330 & 3.732 & 1.973 & 1.188 \\
\hline 5000 & 14.223 & 7.341 & 3.856 & 2.310 \\
\hline
\end{tabular}

Matrix Multiply of ( \(\mathrm{n} \times \mathrm{n}\) ) matrices - double precision


Matrix Multiply of ( \(\mathrm{n} \times \mathrm{n}\) ) matrices - double precision
```

