
Text	Processing	&	Regular
Expressions

Statistical	Programming
Fall	2021

Dr.	Colin	Rundel

	+	

This	is	a	simplified	wrapper	around	 ,	use	the	original	for	additional
control.

Regular	Expressions

stringr	-	regular	expression
functions

Function Description

Detect	the	presence	or	absence	of	a	pattern	in	a	string.
Locate	the	first	position	of	a	pattern	and	return	a	matrix	with	start	and	end.
Extracts	text	corresponding	to	the	first	match.
Extracts	capture	groups	formed	by	 	from	the	first	match.
Splits	string	into	pieces	and	returns	a	list	of	character	vectors.
Replaces	the	first	matched	pattern	and	returns	a	character	vector.
Removes	the	first	matched	pattern	and	returns	a	character	vector.
Show	the	matches	made	by	a	pattern.

Many	of	these	functions	have	variants	with	an	 	suffix	(e.g.)
which	will	match	more	than	one	occurrence	of	the	pattern	in	a	given	string.

Simple	Pattern	Detection

Aside	-	Escape	Characters
An	escape	character	is	a	character	which	results	in	an	alternative
interpretation	of	the	subsequent	character(s).	These	vary	from	language	to
language	but	for	most	string	implementations	 	is	the	escape	character	which
is	modified	by	a	single	following	character.
Some	common	examples:

Literal Character

single	quote
double	quote
backslash
new	line
carriage	return
tab
backspace
form	feed

Examples

Raw	character	constants
As	of	R	4.0,	R	has	the	ability	to	define	raw	character	sequences	which	avoids
the	need	for	most	escape	characters	using	the	 	syntax,	where	 	is	the
raw	string.

	and	 	can	be	used	instead	of	 	-	see	 	for	details

RegEx	Metacharacters
The	power	of	regular	expressions	comes	from	their	ability	to	use	special
metacharacters	to	modify	how	pattern	matching	is	performed.

Because	of	their	special	properties	they	cannot	be	matched	directly,	if	you
need	to	match	one	you	need	to	escape	it	first	(precede	it	by).
The	problem	is	that	regex	escapes	live	on	top	of	character	escapes,	so	there
needs	to	use	two	levels	of	escapes.

To	match Regex Literal Raw

Example

How	do	we	detect	if	a	string	contains	a	 	character?

XKCD's	take

Anchors
Sometimes	we	want	to	specify	that	our	pattern	occurs	at	a	particular	location
in	a	string,	we	indicate	this	using	anchor	metacharacters.

Regex Anchor
	or	 Start	of	string
	or	 End	of	string

Word	boundary
Not	word	boundary

Anchor	Examples

Anchor	Examples	-	word	boundaries

More	complex	patterns
If	there	are	more	than	one	pattern	we	would	like	to	match	we	can	use	the	or
()	metacharacter.

Character	Classes
When	we	want	to	match	whole	classes	of	characters	at	a	time	there	are	a
number	of	convenience	patterns	built	in,

Meta	Char Class Description
Any	character	except	new	line	()
White	space
Not	white	space
Digit	(0-9)
Not	digit
Word	(A-Z,	a-z,	0-9,	or	_)
Not	word
Punctionation

A	hierarchical	view

From	http://perso.ens-lyon.fr/lise.vaudor/strings-et-expressions-regulieres/

http://perso.ens-lyon.fr/lise.vaudor/strings-et-expressions-regulieres/

Example
How	would	we	write	a	regular	expression	to	match	a	telephone	number	with
the	form	 ?

Classes	and	Ranges
We	can	also	specify	our	own	classes	using	square	brackets

Class Type
Class	(a	or	b	or	c)
Negated	class	(not	a	or	b	or	c)
Range	lower	case	letter	from	a	to	c
Range	upper	case	letter	from	A	to	C
Digit	between	0	to	7

Example

Exercises	1
For	the	following	vector	of	randomly	generated	names,	write	a	regular
expression	that,

detects	if	the	person's	first	name	starts	with	a	vowel	(a,e,i,o,u)
detects	if	the	person's	last	name	starts	with	a	vowel
detects	if	either	the	person's	first	or	last	name	start	with	a	vowel
detects	if	neither	the	person's	first	nor	last	name	start	with	a	vowel

Quantifiers
Attached	to	literals	or	character	classes	these	allow	a	match	to	repeat	some
number	of	time.

Quantifier Description
Match	0	or	more
Match	1	or	more
Match	0	or	1
Match	Exactly	3
Match	3	or	more
Match	3,	4	or	5

Example
How	would	we	improve	our	previous	regular	expression	for	matching	a
telephone	number	with	the	form	 ?

Greedy	vs	ungreedy	matching
What	went	wrong	here?

If	you	add	 	after	a	quantifier,	the	matching	will	be	non-greedy	(find	the
shortest	possible	match,	not	the	longest).

Groups
Groups	allow	you	to	connect	pieces	of	a	regular	expression	for	modification	or
capture.

Group Description
(a	|	b) match	literal	"a"	or	"b"	,	group	either

match	"a"	or	"abc"	,	group	bc	or	nothing
match	"abcdefhig"	,	group	abc	and	hig
match	"abc"	,	non-capturing	group

Example

How	not	to	use	a	RegEx
Validating	an	email	address:

Exercise	2

Write	a	regular	expression	that	will	extract	all	phone	numbers	contained	in
the	vector	above.

Once	that	works	use	groups	to	extracts	the	area	code	separately	from	the
rest	of	the	phone	number.

